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AbstracL In this Monte Carlo simulation we study the glass transition of a dense 
threedimensional polymer melt using a lattice model (a bond-fluctuation model on a 
simple cubic lattice) that was highly optimized for a vector supercomputer. Long bonds 
are energetically favoured to create a competition behueen bond energy and packing 
constraints, which prevenfs the melt from clystallizing when it [reezer The onset of 
this freaing can be monitored by the temperature variation of various static quantities 
that probe both the length scale of a bond vector, such as the mean bond length and 
mean energy per bond, and that of the whole chain, such as the radius of gyration. 
As the melt vitrifies, these quantities gradually become independent of temperature in 
a nanau range around T 0.2 (the temperature is measured in units of an energy 
parameter, f, introduced in the model Hamiltonian) and their value at low temperatures 
is svongly influenced by the m l i n g  rate, It is thus possible to infer from these cuwes 
the cooling-rate dependence of the freezing temperature Ts. This analysis, which was 
done for founeen different cooling rates covering two decades, shows that Tg does 
not necessarily vay linearly with the logarithm of the cooling rate, but can also be 
well described by a ‘vogel-Fulcher‘ type of equation, giving a freezing temperature of 
TK o 0.17 at an infinitely slow cooling rate. The type of waling-rate dependence of 
T, that is found depends upon the physical quantity from which it is derived and upon 
the size of the studied temperature and cooling-rate interval. Despite the difference in 
the detailed dependence of Tg on the cooling rate, the extrapalared value TK coincides 
with the Vogel-Fulcher temperature To, obtained from the temperature variation of the 
diffusion coefficient, within the ermr ban 

1. Inhoduetion 

Although a lot of experimental and theoretical work has been done in order to 
elucidate the physical phenomenon of the glass transition [1,2], the theoretical 
description of this transition must still be looked upon as an unsolved question [1,3]. 
Motivated by the experimental finding of a rather pronounced discontinuity of the 
specific heat at constant pressure, or of the thermal expansion coefficient, and by the 
‘Kauzmann’ paradox [4], it was speculated that there is an underlying thermodynamic 
glass transition of second order that is blurred by the finite experimental observation 
time [5,6]. In the respective theories the glass transition is related to the vanishing of a 
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percolation path for the 'free volume' around a molecule [6] or of the configurational 
entropy [SI. Although it is possible to understand the empirical Vogel-Fulcher 
law [7] within the framework of these thermodynamic theories, they cannot account 
for the detailed dynamical aspects of the glass transition [I]. However, a detailed 
explanation of these aspects has been attempted by an extension of the mode- 
coupling theory [SI to the glass transition, which in its idealized version [2] Views 
this transition as a purely dynamical phenomenon where the characteristic timescales 
of the glass-forming system diverge when a critical temperature is approached without 
any simultaneous divergence of a length scale. This critical temperature is situated 
in the region of the undercooled liquid and is thus weU above the calorimetric 
glass-transition temperature. Therefore both the static and dynamical approaches 
to the glass transition predict that the glass-forming system loses its mobility at 
a certain temperature, whereas an unprejudiced look at the temperature variation 
of the viscosity supplies no evidence for a sudden change. Rather, the viscosity 
varies smoothly with temperature, changing slope around Id poise [1,9] and then 
increasing dramatically to such large values upon cooling the supercooled fluid that 
the associated relaxation times become macroscopic (i.e. I-Id s, or larger). Hence it 
is inevitable to have a gradual freezing process during which the glass former falls out 
of equilibrium when the internal relaxation times of the system become comparable 
to the experimental observation time, i.e. the cooling rate [3, IO]. The crucial role of 
the correct choice 01 the cooling rate in the preparation of a glass in order to bypass 
crystallization is well known from both experiments and computer simulations. Using 
special techniques, which achieve cooling rates of the order of I@ K s-l [3], many 
metallic alloys readily form glasses, whereas unphysically high cooling rates, such as 
IO'* K s-', which can be generated on a computer, succeed in vitrifying even a simple 
liquid such as argon [Ill.  Perhaps the glass transition can thus be looked upon as 
a universal phenomenon that happens irrespective of the precise chemical nature of 
the liquid, provided the cooling rate is high enough. 

The distinguishing property of this material may therefore not be the ability 
of a substance to form a glass, but rather the ease with which the solidification in a 
disordered liquid-like structure occurs. Among polymers, for instance, there are many 
substances that form glasses very easily, even when they are cooled with extremely 
slow cooling rates [3,12]. Due to this intrinsic difficulty to crystallize, polymers are 
well suited for model investigations that concentrate on the universal features shared 
by all fragile glass formers [13], such as the non-Arrhenius behaviour of the viscosity 
or the time-temperature superposition property of the structural relaxation, as well as 
its strong stretching as compared to an ordinary Debye relaxation [1,2,9,12]. Since 
for this kind of investigation the detailed microscopic structure of the polymers is 
not essential [14, IS] one can work with coarse-grained models that retain only basic 
properties of a polymer melt, such as chain connectivity and self-avoidance of the 
chains [16]. All of these models share the advantage that they can be simulated very 
efficiently, so that it is possible to obtain good statistics and to observe slow relaxation 
processes, which are especially prominent in the vicinity of the glass transition, over 
many decades in time. For instance, the bond-fluctuation model, originally proposed 
by Carmesin and Kremer [17], which is used in its threedimensional version [18,19] 
in this work, is such a model. The bond-fluctuation model is known to reproduce 
the expected static and dynamic behaviour of a dense melt in both two [20] and 
three dimensions [21] and it has been successfully applied to very diverse theoretical 
problems of polymer science, such as interdiffusion [lS], the unmixing transition of 
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symmetric and asymmetric binary polymer mixtures 1221, reptation dynamics [23,24], 
layers of end-grafted polymer chains at surfaces [25], wetting phenomena [26] and 
the glass transition of two-dimensional polymer melts 1271. 

While the study dealing with the glass transition was done in two dimensions 
exclusively, and considered only a single cooling rate, the present work is a first step 
in extending this analysis to the three-dimensional case. In this paper we concentrate 
on the cooling-rate effects on the glass transition and on the structure of the frozen 
state. Starting from we11 equilibrated configurations at infinite temperature the melt 
was cooled continuously. We used fourteen different cooling rates covering two 
decades in time and 160 independent configurations each containing 1800 monomers, 
i.e. the statistics is based on 288OOO monomers in total. Combining this with an error 
analysis that carefully takes correlations into acmunt, the statistical inaccuracy is well 
under control in this Monte Carlo simulation. Thus it is possible to obtain a rather 
precise estimate of the coolingrate dependence of the freezing temperature of the 
melt, which is calculated in the standard way by the intersection point of two straight 
lines extrapolated from the liquid and glassy region [1,3]. 

The contents of this paper are divided into the following parts. In section 2 we 
review the essential features of the bond-fluctuation model that are necessary for 
understanding OUT approach and we present the model Hamiltonian by which we 
want to introduce glassy behaviour in the U priori athermal system. ThjS section also 
summarizes the simulation parameters and the cooling procedure. Section 3 deals 
with the results obtained for the temperature variation of characteristic quantities 
probing relevant length scales in the system; section 4 is exclusively devoted to a 
discussion of the cooling-rate dependence of the freezing temperature. The final 
section contains our conclusions, and gives an outlook on future work 

2. Model and simulation method 

21. Bond-fluctuation method and the model Hamiltonian 

The physical relevance of coarse-grained lattice models for polymers [I61 is based 
on the idea that the long-distance and longtime properties of evely flexible linear 
polymer chain can faithfully be represented by a ‘Kuhnian chain’ [14, IS]. Such a chain 
is usually constructed in the following way. One takes a certain number of chemical 
monomers adjacent to each other along the chain and lumps them together into one 
‘effective bead’, which is then put in the centre of graviy of this group of chemical 
monomers. If one continues this coarse graining along the parent chain [Z], the 
result is a set of effective beads distributed in space, which can then be connected by 
coarse-grained bond vectors [29]. Although the properties of these ‘Kuhnian chains’ 
largely depend upon the number of chemical monomers in the effective beads 129,301, 
they all have in common the fact that the coarse-grained bond vectors and bond 
angles are very flexible. Choosing a chain length of ten effective beads then typically 
translates into an index of polymerization of 30-50 (for simple polymers such as 
polyethylene, for instance) [29,30]. Contrary to the chemical bond vectors and bond 
angles, whose variations are largely hnited by stiff potentials, they can fluctuate 
considerably. The bond-fluctuation model exploits this idea of the ‘Kuhnian chain’ 
and translates it onto a lattice [17,18] (figure 1). In this spirit it is then completely 
natural that the energies characterizing the chemically realistic chain model (energies 
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for bond-length and bond-angle vibrations, torsional and non-bonded potentials) get 
‘mapped’ onto effective potentials controlling the lengths of the effective bonds in the 
bond-fluctuation model (and possibly the angle between the bonds). 

F@rc 1. Schematic illustration of thc mnstruction of a manc-grained model for a 
manomolecule such as polyethylene. In thc example shown here, the subchain formed 
by ulc three Cc bonds labelled 1, 2, 3 is represented by fhe effective bond labelled 
as I, fhe subchain formed by the three bonds 4, 5, 6 ir represented by the effective 
bond labelled as 11, etc In the bond-fluctuation model on thc quare (or simple cubic) 
lattice the length b of the effective bond is allwed Lo Auctuatc in a certain range 
bmin 4 b 4 6-, and excluded-volume interactions arc modelled by assuming that each 
bond occupies a plaquette (or cube) of 4 (9 neighbouring lattice sifes, which then are 
all blocked for funher occupation. 

In this model the polymer chains are represented by self- and mutually-avoiding 
walks (SAW) [16] on a simple cubic lattice where each monomer occupies a whole 
unit cell. The monomers are connected by bond vectors whose lengths are set to vary 
between two and d% in three dimensions. The smallest length guarantees the local 
self-avoidance of the chains, whereas the largest length was chosen to be smaller than 
four in order to prevent the chains from crossing each other in the course of their 
motion. Using these restrictions on the bond lengths, six basic classes of bond vectors 
can be constructed, allowing 108 different bond vectors and 87 bond angles 1181. The 
basic bonds are 

12~01 12, LOI iz,t, ti 12,2, 11 13,0,01 i 3 , m  (1) 

where the symbol [ D ]  stands for an equivalence class of bond vectors sharing the 
same length but differing in their diection. Thus the class [3,0,0] comprises all bond 
vectors having a length of three and pointing in the positive and negative direction of 
the lattice axis. In the course of the Monte Carlo simulation a monomer is selected at 
random and moved for a lattice constant in an arbitrary direction, if the neighbouring 
lattice sites in the direction of the attempted move are empty (self-avoidance) and if 
the resulting new bond vectors belong to the classes of vectors enumerated above. 

Note that, up until now, self-avoidance and the uncrossability of the walks are 
the only conditions that govern the chain dynamics. No Hamiltonian has yet been 
introduced to contribute to the motion of the monomers, and thus the model is still 
independent of temperature. The desired Hamiltonian should be designed in such 
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a way that it contains the basic microscopic ingredients of the physical phenomenon 
under study. Therefore the following question arises: what are these microscopic 
ingredients that bring about glassy behaviour? A hint for the answer to this question 
can be obtained from the theory of spin glasses (311. From the study of these 
random magnetic systems it has been discovered that two properties are necessary to 
generate glassy behaviour, namely frustrafion and randomness. By randomness it is 
meant that the interaction between two spins is chosen according to some probability 
distribution so that they can either interact femmagnetically or antiferromagnetically. 
But then a situation is conceivable where a spin cannot align in such a manner that 
it simultaneously satisfies all the energy requirements of its environment. This spin is 
said to be ‘frustrated‘ (311. 

If one assumes that frustration and randomness are in general responsible for 
the glass-lie features of a system, one can Uy to incorporate them into the bond- 
fluctuation model. One way of doing that could look like this. Imagine that we assign 
an energy to each bond vector favouring those of the class [3,0,0] in comparison to 
all other vectors, Le. we introduce the Hamiltonian 

where bnpc is the bond vector to the nth monomer of polymer p in configuration c 
Each bond will then try to stretch out along the lattice axis when the melt is cooled. 
But this stretching may be hindered by the presence of the other monomers in the 
neighbourhood of the specific bond. Therefore it is very likely that a competition 
arises between the attempt of a bond to adopt its energetically preferred state and 
the structural constraints that the surrounding monomers exert on that bond. If this 
competition prevents the system from satisfying the energy and geometry constraints 
simultaneously, a ‘geometric frustration’ may result (figure 2). Where this geometric 
frustration happens in the melt depends on the individual environment around a 
bond and can thus occur at very different (Le. ‘random’) places in the system. 
Therefore the proposed two-level Hamiltonian very easily fulfils the above-mentioned 
requiremenis for glassy behaviour. Since all bond vectors of the class [3,0,0] are 
energetically favoured, irrespective of their orientation, a polymer can adopt many 
different configurations in its ground state. This large degeneracy of the ground state 
is also found in research on spin glasses, and is believed to be a characteristic trait 
of glass-forming substances [31]. 

As well as these arguments put forward in favour of the above Hamiltonian by 
analogy to the theory of spin glasses, one must also stress that it influences the 
properties of the lattice chains in a fashion similar to how a real chemical polymer 
behaves. If one decreases the temperature one increases the population of the ‘trans’ 
state [ZS] of an individual chemical bond. As a result, each real polymer will also 
try to expand if the melt is cooled (29,301, but the interaction with other chains 
may prevent, or at least hinder, this tendency. This feature is clearly apparent from 
various interesting attempts to realistically model the glass transition of polyethylene 
chains [32,33]. Our model thus captures, we think, the most important aspect of 
this behaviour, but it has the advantage that our simulations cover a range of times 
that extends over many decades (in units of the Rouse time 1151 of the athermal 
high-temperature limit); by comparison, the time of the realistic simulations is less 
than a Rouse time due to the complexity of the structures that have to be considered 
explicitly. The proposed Hamiltonian therefore combines, in a natural way, both the 
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I 
“blocked ” 

..-- - ”geometric frustrotion” 

Pigum 2. Sketch of a possible mnfigulation of monomers belonging to different chains 
in the melt in order to illusvale the effen of the model Hamiltonian and the concept of 
geometric fruslration. All bond vectors s h o w  in this piclure have an energy f ,  except 
for the vector (3,0,0) which belongs to the gmund state. This vector blacks four lattice 
sites (marked by o) that are no longer available to other monomers since two monomer8 
may not overlap (the SAW condition). Due lo this selfavoiding walk condition a jump 
in lhe direction of thc large a m  k also forbidden. If a monomer tried to reach the 
gmund state (i.e. a bond vector from the class [3,0,0]) by such a jump, the prescnce 
of the monomers in its surroundings would prevent this attempt (geometric fmtration). 

typical behaviour of a polymer melt during a cooling process and the major ideas of 
the very well established theory of spin glasses. 

2.2 Sirnulalion parameters 

NaturaUy, this model Hamiltonian only develops its effect if the system is dense 
enough so that some of the bonds are ‘frustrated’. What ‘dense enough’ actuaUy 
means can be clarified if one calculates the critical density +J N) above which the 
ground state is no longer accessible to the melt. Bking into acwunt the special 
choice of the above-introduced Hamiltonian, a polymer consisting of N monomers 
on a d-dimensional lattice needs Zd lattice sites per monomer and Zd-’ lattice sites 
per bond, i.e. it needs a total ’volume’ of NZd 4- (N - l)Zd-‘ lattice sites in its 
ground state, so that the critical density is 

Please note that this critical density, at which each lattice site is either occupied by 
a monomer or by a bond, vanes only slightly with the degree of polymerization N 
(+,(3) = 0.75, +,(lo) = 0.69). In this simulation a degree of polymerization N = 10 
was chosen which guarantees that the melt at a density 2 0.5 exhihits ‘Rouse 
dynamics’ [34] without any complications caused by entanglement effects [14,15,21]. 
Since the relaxation times of the melt drastically increase with increasing chain 
length and density, it is advisable not to work at, or even above, the critical density 
for N = 10, especially if one takes into acwunt the fact that the configurational 
constraints that prevent crystallization are much stronger in three dimensions than 
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in two [2q. Therefore a density between 4 = 0.5 and 4 = 0.69 was chosen for 
this simulation, i.e. = 0.53, resulting from 4 = 8 N P / L 3  with N = IO, the 
number of polymers per simulation box P = 180, and the length of one side of the 
box L = 30. Since periodic boundary conditions were used throughout the whole 
simulation to reduce the finite size of the system, a box length of L = 30 belongs to 
the lowest possible values where the radius of gyration is still smaller than half of this 
length for the whole temperature range (see section 4) so that the self-interaction 
of a chain with its periodic images becomes negligible. In total the simulation box 
contained 1800 monomers. In order to improve the statistics further, 160 independent 
configurations of this system were run, which was only possible because we worked 
with a highly optimized version of the bond-fluctuation algorithm 1191. While the 
individual simulation box thus contains only 3-4 times more particles than other 
recent glass simulations [35,36], our final results are based on particle numbers 
about 500 times larger than in the cited publications [35,36]. However, we feel 
that this large effort is indispensable for the questions studied in the present work. 
We performed an error analysis for all our data following the prescription given by 
Binder and Heermann [37], which allows us to obtain an accurate estimate of the 
error on correlated data. If not stated otherwise the statistical error is always of the 
size of the symbols in the following sections. 

2.3. Cooling procedure 

First, an initial configuration was generated by arranging the totally stretched polymers 
collinearly in layers. These layers were then superimposed and shifted with respect 
to each other in a random fashion in order to speed the subsequent relaxation, which 
was done at infinite temperature. We allowed the melt to relax until the chains had 
moved for a period of several (typically three) ‘Rouse times’ [15,21,23]. Starting 
from these well equilibrated athermal configurations the polymer melt was cooled 
from T = m to T = 0.05(= p&)f by linearly changing the reciprocal temperature 
p as has already been done in two dimensions [27]: 

p ( i )  = PmaxrQt. 

Fourteen different cooling rates were simulated: 

(4) 

rQ = 4.0 x 10-~ 3.0 10-~ 2.0 x 10-~ 1.5 x 10-~ 1.0 x 10-~ 
8.0 x 6.0 x 4.0 x 3.0 x 2.0 x (5) 
1.5 x 10-6 1.0 10-6 8.0 x 10-7 4.0 x 10-7 

although it suffices to confine oneself to a smaller number of cooling rates in order 
to illustrate the general tendencies. Therefore only the cooling rates that have been 
underlined will be considered for most of the results presented in the following 
sections. 

The above-specified cooling rates together with (4) show that the whole cooling 
process is done in 2.5 x io4 Monte Carlo steps (MCS) for rQ = 4 x and in 
2.5 x Id MCS for rQ = 4 x respectively. In order to get an impression of how 
the abstract Monte Carlo time unit, defined by the amount of time that is needed 

t The temperature and all energies are measured in units of e. All lengths are measured in units of the 
lattice constant. 
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to move each monomer once on average, can be related to conventional units of 
time one must take into accOunt the fact that a monomer of the bond-fluctuation 
model stands for a group of chemical monomers of a real chain, as pointed out 
in the first paragraph of this section. Since this group typically contains about five 
chemical monomers for simple polymers such as polyethylene (29,301, for instance, 
the motion of a monomer in the bond-fluctuation model should correspond to bond 
reorientational jumps in the torsional potential of a real polymer whose relaxation 
time is of the order of lO-"s. This identification, 1 M a  w lO-"s, is, however, 
only a rough estimate which may depend upon the choice of the model Hamiltonian. 
This fact is apparent from another study with the bond-fluctuation model, where 
the Hamiltonian was adapted in such a way that one could successfully simulate a 
real chemical polymer, namely bisphenol-A-polycarbonate [38]. In this simulation the 
good agreement between the calculated and experimentally measured values of the 
viscosity in the regime 7 < 10 poise allowed one to expres the abstract Monte Carlo 
time unit in seconds. It turned out that one M a  corresponds to 1.5 x lO-I3s in this 
model, a value which is about two orders of magnitude smaller than the estimate 
from above. Using these approximate numbers one can conclude that the overall 
cooling process takes place in a time window of 10-'z-10-6s, which is comparable to 
the time range of recent neutron scattering studies on polyhutadiene [39]. 

3. EfIects of the cooling rate 

In order to obtain a deeper insight into the effects of the abovedescribed geometric 
frustration and of the cooling rate, it is necessary to consider quantities that probe 
the relevant length scales of the system. There are already, a priori, two length scales 
of particular importance for an athermal polymer melt, namely the bond length and 
the radius of gyration. Quantities that are sensitive to changes on the first length 
scale are, for instance, the mean energy per bond and the 'Flory parameter'. They 
will be discussed in the following subsection. 

3.1. Mean energy per bond and the FIotyparameter 

The mean energy per bond is defined as the average of the two-level Hamiltonian 
(2) over all bonds, polymers and configurations, Le. 

where the symbol stands for 

with the explicit values N = 10, P = 180 and C = 160 from our simulation (see 
section 2). Since the temperature and all energies are measured in units of E, the 
energy parameter in the model Hamiltonian (2), a bond can either adopt an energy of 
zero or one. If all bonds were in the excited state, the mean energy per bond would 
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Flgure 3. PI01 of Ihe mean energy per bond againsl T for five diKeren1 m l i n g  rate% 
ro = 4.0 x 10-5 (o), ro = 8.0 x 10-6 c+), ro = 4.0 x 10-6 ai, ro = 8.0 x 10-7 
(G) and ro = 4 . 0 ' ~ ~ 1 0 - ~  (A). For the i l d  of ilarity, ermr bars' a& oil)' included for 
the firs1 cooling rate (i.e. for ro = 4.0 x The chain cuwe represenfs the random 
walk approximation of Eb(T), equation (9). 

have to be one, whereas it would become zero if all bonds populated the ground 
state, Le. if frustration were absent Therefore a non-vanishing value of the mean 
energy per bond at T = 0 serves as a good indication that the propmed Hamiltonian 
indeed introduces strong topological constraints. 

Figure 3 shows a plot of &(T)  against T for the five representative cooling 
rates mentioned in section 2. In the high-temperature region (T E [0.6,2.0]) the 
value of &(T) is close to one and the curves for the different cooling rates nicely 
collapse, emphasizing that the majority of the bonds are in the excited state and that 
the melt is mobile enough to adapt easily to the speed with which the temperature 
is changed. If one reduces the temperature further, more and more bonds go into 
the ground state until the curves level off in a narrow temperature range around 
T FZ 0.2. In this range the intrinsic relaxation times of the melt become comparable 
to the observation time, which is determined by the cooling rate. The system then 
falls out of equilibrium and gets locked at a value of which therefore depends 
on the choice of the cooling rate. A further decrease of the temperature no longer 
influences the distribution of the bond v e m  on the two energy levels. The melt 
is totally decoupled from the extemal 'heat bath' supplied by the Boltzmann factor. 
This decoupling will happen later for slower cooling rates, so the energy value where 
the curves get 'locked in' decreases with the cooling rate. Since E,(T)  becomes 
constant as the temperature approaches zero it is clear that the anticipated geometric 
frustration effects are actually present, although we do not work at or close to the 
critical density (3). This, however, was necessary in two dimensions in order to 
develop similar effects [ZV, which indicates that the dimensionality of space might 
have a crucial inauence on the glass transition, an ineuence that is well known 
from the research on spin glasses and Potts glasses [31,40]. Because of the present 
frustration effects we will refer to the low-temperature region (T < 0.2) as 'glass', 
whereas the above-specified high-temperature region is called 'liquid'. 

In addition to the simulation data, a chain curve is shown in figure 3 that 
corresponds to a generalized random walk 1161 approximation of the mean energy 
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per bond. A random walk approximation ignores all interactions among the bonds 
in the melt so that the partition function of a bond becomes identical to that of an 
isolated two-level system for our model Hamiltonian: 

b=l 

where Y stands for the total interaction potential of the dimer with the melt, and 
go and g, are the degrees of degeneracy of the ground state and the excited state of 
a bond, respectively. Their values for the three-dimensional bond-fluctuation model 
arc go = 6 and g, = 102 With these values, and the above-introduced partition 
function, it is now easy to calculate the mean energy per bond in the random walk 
approximation: 

Since tbe random walk approximation allows configurations where subsequent bonds 
are folded back on top of each other, the bond vector (3,0,0) may be followcd by the 
vector (-3,0,0). Therefore the calculated mean energy per bond is systematically 
smaller than the simulation data. However, it is astonishing how close the result 
of this simple calculation lies with respect to the data that take full account of the 
self-avoiding walk condition. This property has already been observed in a different 
context [24]. 

The mean energy per bond only probes changes on the length scale of a bond. In 
order to go one step further one can search for a quantity that includes correlations 
between adjacent bond vectors. Such a quantity is the %lory parameter' or 'flexibility', 
f(T), defined as the probability that the angle between two bond vectors OnPS is not 
1800: 

In this formula P(d,,,,T) stands for the probability that the bond angle Onpc 
is adopted at temperature T.  Many years ago Flory tried to characterize the 
order-disorder phase transition in a melt with this flexibility [41] before Gibbs and 
diMarzio used hs essential resul~s to develop their theory for the glass transition of 
polymers [5,42]. Thus it is of great interest to investigate this quantity near the glass 
transition. In figure 4 one can see a plot of this parameter against temperature. 

Although f(T) shows a similar dependence on the coolmg rate as does the 
mean energy per bond, there are some distinct qualitative differences between the 
two quantities. In the high-temperature region (T E [0.6,2.0]) the mean energy 
per bond decreases much more strongly (by about 15%) than the amount of 180° 
angles increase (only about 0.2%). Therefore it seems that bond vectors that are 
in the ground state do not force their adjacent bond vectors to align with them. 
Correlations between the orientations of subsequent bond vectors are negligible in 
the high-temperature region, whereas they become significantly more important at 
intermediate temperatures between T = 0.5 and T = 0.1, In this temperature 
range the number of bonds in the ground state increases by a relative factor of 2 4  
compared to the high-temperature region, while the same factor is about 20 times 
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larger for the 180° angle. The increase of the ground-state population thus induces 
a strong stretching of the bond angle, which is also clearly emphasized if one looks 
at the temperature dependence of the mean bond angle (figure 5). A further glance 
at the full hond-angle distribution function (which is not shown here) reveals that 
no other angle gains as much weight with decreasing temperature as the 180' angle 
does. This effect could not have been expected a priori from a Hamiltonian that only 
refers to the bond length and is independent of the individual orientation of the bond 
vector. Therefore it seems that this effect has to be considered as the result of a 
cooperative development of short-range static correlations. 
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Figure 5. Plot of the mean bond angle for the five 
representative cooling l i l t s  with Ihe Same choices 
as in figure 3. Again, for the sake of clarity, the 
enur bars are only show for the fastest cooling 
rate. 

3.2 Specific heat and internal temperaIure 

If one knows the temperature dependence of the mean energy per bond one can 
define a specific heat per bond, C,,. As long as the system is in equilibrium C,, can 
be calculated either by the temperature derivative of &(T) or by the application of 
the standard fluctuation relation from statistical mechanics [43]: 

(11) 
dE, 1 c, := - d T  - = +wJnpc) - ~b)*),,,. 

Here the symbol represents the average over all bonds la, polymers p and 
configurations c, and IS defined analogously to (7). If the system falls out of 
equilibrium the last equality no longer holds. This behaviour is exemplified in figure 6, 
which shows a comparison of the two ways of determining C, for the fastest cooling 
rate ra = 4 . 0 ~  In the high-temperature region (T 2 1.2) there is no difference 
between the methods of calculating C,. The melt is still in thermal equilibrium. 
However, as soon as the influena: of the finite cooling rate makes itself felt the two 
curves no longer collapse. Whereas the specific heat calculated from the derivative of 
the energy exhibits the expected shape of a two-level system, Le. a Schottky anomaIy, 
C, from the fiuctuation relation steeply increases because the main temperature 
dependence comes from the prefactor in equation (11). Le. C, o( T-*, as the energy 
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fluctuations freeze together with the energy itself. The larger the cooling rate is, the 
earlier this increase happens (i.e. for ra = 4.0 x around T r-z 1.1, and for 
ra = 4 . 0 ~  not shown here, around T % 0.7) and is therefore clearly related to 
the onset of the above-mentioned decoupling of the melt from the external heat bath 
supplied by the Boltzmann factor. The external temperature then no longer coincides 
with the intemal temperature Ti of the melt, which is reflected in the actual population 
of the two energy states. The concept of an 'internal temperature' distinct from the 
actual temperature below the glass transition has been widely used [I]. Therefore the 
following question arises: is it possible to assess, at least in an approximate sense, 
t h s  internal temperature from the distribution function of the bond vectols on the 
allowed energetic states? Applying the random walk approximation again this can be 
tested in the following way: 

where N ( X ( b m p C ) )  is the number of bond vectors having an energy corresponding 
to their state, g,, is the degree of degeneracy of the respective bond-vector energy 
(i.e. either 6 or 102, see the discussion below (8)) and Nb is the total number of 
bonds per configuration (i.e. Nb = ( N  - 1)P). If one determines the bond-vector 
distribution function in the simulation, equation (12) is a first-order approximation of 
the temperature to which this distribution of bond vectors corresponds. For the actual 
definition of the ratio of the probability of linding a bond in the ground state to 
that of finding it in the excited state was used, because the temperaturedependent 
partition function then cancels: 

Figure 7 shows a plot of the ratio T/T, against tempcrature. If all interactions 
between the monomers had properly been taken into a m u n t  in the calculation of T,, 
the internal temperature would have been equal to the extemal temperature as long 
as the system was in equilibrium. However, instead of a horizontal line one finds a 
straight line with a finite slope in the high-temperature region, which must therefore 
be attributed to the neglect of the SAW condition. In the low-temperature glassy 
region the distribution of the bond vectors no longer changes, so that 7 becomes 
constant. Hence one expects to find a straight line with slope 1/q no matter which 
precise approximation was used to calculate q. This expectation is fulfilled, as a 
glance at figure 7 shows. 

Despite the deficiency in the high-temperature behaviour, q can be used to 
replace the exploding prefactor in the fluctuation relation in order to assess the 
specific heat, which corresponds to the actual distribution of bond vectors. If one 
makes this replacement for all studied cooling rates one can hope to eliminate the 
histoiy of the cooling, so that all specific heat curves should coincide if plotted 
against Ti. This elimination would correspond to a time-temperature superposition 
principle [l] for the cooling rate, a principle which is well known and very important 
in the dynamical analysis of the glass transition 121. This expectation works out 
astonishingly well, as can be seen in figure 8. The specific heat data for the different 
cooling rates collapse nicely onto one single scaling curve, which can accurately be 
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Figure 9. Mean squared bond length against 
temperalure for the five representalive cooling 
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meaning as in figure 3. 

described by the analytical expression of the specific heat for a two-level system. 
Using the partition function of the random walk again, equation (S), one obtains for 
c,"c T )  

This result is shown as a chain curve in figure 8. We are currently studying whether 
the coIlapse of the specific heat data when rescaled by the above-introduced internal 
temperature, and the description of the resulting scaling curve by the two-level 
specific heat formula, are mere coincidences; or if it is indeed possible to reduce 
the complicated many-body interaction of the chains on a single-bond problem by 
virtue of a suitably defined internal temperature. 
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3.3. The mean squared bond length and the radius of gvralion 

In addition to the quantities discussed in the previous sections it is also worthwhile 
looking at a quantity like the mean squared bond length (bt,,),  =, which directly 
measures stretching on the length scale of a bond vector. h e  temperature 
dependence of (b~pc)npc  for the five representative cooling rates is very similar to that 
of the mean energy per bond (see figure 9). Following a high-temperature region 
(Le. T E [0.6,2.0]), where the melt is in thermal equilibrium on the considered 
length scale for all cooling rates, the effect of the speed of cooling starts to be felt 
below T sz 0.5, accompanied by a strong expansion of the mean bond length. The 
increase of (b2,pe)npc is stronger, by a factor of approximately two, than the decrease 
of Eb(T) in the corresponding temperature range; exactly the opposite behaviour is 
observed in the high-temperature region. There Eb(T) decreases by about 16% in 
comparison to only a 3% increase of (b~,,),, , .  This difference can be rationalized 
in the following way. If a bond vector reaches its ground state it blocb 2(d-1) lattice 
sites (see (3) and figure 2) which are no longer available for other monomers. This 
loss of 'volume' has to be compensated by a corresponding shrinking of other bond 
vectors in order to make the density stay the same. However, the compensation can 
only take place if the melt has enough time to overcome the energy barriers at the 
respective temperatures. It is certainly possible in the high-temperature region where 
the melt is still in equilibrium so that (b~p,) ,pc only increases slightly, although many 
bonds adopt the ground state. But it will be progressively hindered the lower the 
temperature becomes and thus the more the finiteness of the cooling rate becomes 
visible. Since a bond vector can adopt a large mean squared bond length even 
though it is in the excited state (even 9 is possible by the equivalence class [2,2,1], 
see equation (1)) (b2,p,),pc increases much more steeply than E,(") can decrease in 
the intermediate temperature range (Le. T E [0.2,0.q). The increase of (b2,pc)npc 
continues until the temperature reaches T c 0.2, where the curves level off and 
(b~ , , ) , , ,  gets locked at a value depending on the cooling rate. This final value of 
( b ~ , , ) , , ,  in the low-temperature region is larger the slower the cooling rate is, but is 
always smaller than 9, which is the expected value for (b~p,p.)npc in the ground state, 
a behaviour reminiscent of that of the mean energy per bond. 

In addition to the scale of a bond another important length scale for a polymer 
is that of the radius of gyration. Therefore we also calculated this quantity, which is 
defined by 

N 

(15) 
1 

@i = mnpc - Rpc)z)pc 
n=l  

where rnpc is the vector to monomer n in polymer p of configuration c, and Rpc 
is the vector to the centre of mass for the respective polymer. The result of the 
simulation is shown in figure 10. Qualitatively the dependence on temperature and 
on the cooling rate of the curves very much resembles that of the mean squared 
bond length. In the high-temperature range above T = 0.5 all five curves nicely 
collapse, proving that the melt is also in equilibrium on this length scale, whereas 
Ri increases steeply below T = 0.5 before it crosses over to a constant value in the 
temperature region where the melt vitrifies. Despite these qualitative similarities 
between the shapes of (b~, , ) , , ,  and Rg(T), a closer comparison of the two 
quantities reveals that increases by the same amount (approximately 3%) as 
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the mean squared bond length in the high-temperature region, whereas at T 4 0.5 
the cooling rate crucially affects the strength of stretching on the two length scales. 
For rQ = 4.0 x 10-5(b:pc),,pc expands faster than fL&(T), whereas the opposite is 
true for ro = 4.0 x lo-’. 
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F@m 10. Radius of gyration against temperalure 
for the five different cooling rates with the same 
choices as in figure 3. Ermr bars are again only 
included for the faslest cooling rate. The chain and 
bmken c u m  compond to the generalized non- 
reversal random walk (NRRW) approximation, which 
is explained in the text. 

Flgum 11. R$/(b~p&pc against temperature for 
the five different cooling ramwith the same choices 
as in figure 3. For the sake of clarity, error bals 
have onb been included for the fastest amling rate, 

In order to illustrate this point further we compare our simulation data with 
a generalized non-reversal random walk (NRRw) [16] approximation of g, which 
can be obtained from a prescription that Flory describes in his textbook (281 if one 
uses the simulated bond-vector and bond-angle distribution functions to perform the 
necessary averaging [30]. Therefore this analytical calculation depends upon the 
details of the cooling process. The result of the approximation is also shown in 
figure 10, exemplified for three of the cooling rates. Since the NRRW approximation 
only partially takes into account the condition that no two monomers may overlap 
(the SAW condition) the calculated R& values are systematically smaller than the 
simulated ones in the high-temperature region, because the self-avoidance of the 
monomers makes the polymer stiffer. However as soon as the influence of the 
cooling rate Stam to be felt the NRRW approximation crosses the simulation data and 
settles down at a higher value of in the glassy temperature region for all of the 
cooling rates. This a priori unexpected result can be rationalized as follows. Since 
the NRRW approximation only takes into account correlations benueen neighbouring 
bond vectors it is only affected by processes that happen on the local length scale of 
a bond. Changes on this length scale require a shorter amount of time than changes 
on a larger length scale, such as that of R& because more and more monomers are 
involved in the regrouping motion on larger length scales. Hence different timesCnles 
bdong to diferenf length scales. If the temperature is lowered very quickly only 
the local structure of the melt may be able to adapt to this speed, whereas the 
larger structures essentially remain in a state that corresponds to a higher (internal) 
temperature. 

That these retardation effects, inferred only very indirectly from a comparison 
of the NRRW approximation and the simulation data, are actually present may be 
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visible if one plots the ratio of the radius of gyration and of the mean squared 
bond length, i.e. Rk/(b:pc)npc, against temperature for the different cooling rates. 
This is done in figure 11. It is clearly visible that the mean squared bond length 
expands faster than the radius of gyration if the cooling rate is large. The slower the 
cooling rate becomes the more Rk catches up with the stretching of (b$,,)npe, until 
a cooling rate is reached where both length scales are affected in the same way (i.e. 
at rQ = 4.0 x For even smaller cooling rates the radius of gyration expands 
more strongly than the mean squared bond length due to the contribution of the 
bond angles to the overall size of the polymer. 

4. Coaling-rate influence on the transition point 

In the previous sections we have shown that the cooling rate strongly influences the 
temperature variation of different quantities that reflect the structure on the relevant 
length scales of the melt. All of these quantities can be used to determine the 
cooling-rate dependence of the freezing temperature Tb. This dependence is usually 
extracted from this kind of data by finding the intersection point of two straight 
lines, which are extrapolated from the glassy and liquid region, respectively [1,3,44]. 
Both of these straight lines are well defined for the internal temperature, where the 
interval T E [O.OS,O.oS] was used for the extrapolation from the glassy region and 
that of T E [1.2,2.0] for the liquid side. In the case of the ‘S-shaped curves’, like 
&(T) or g ( T ) ,  however, a good choice for the temperature interval of the liquid 
region is not so evident. In order to find the centre of the curvature where these 
curves cross over to a constant value, the temperature interval T E [0.25,0.35] was 
takent. Although this interval lies deep down in the region of the undercooled liquid 
including only temperatures up to twice Tb, this is also the range conventionally used 
in experiments [1,3] and simulations 1441 for the same analysis . In this way one can 
determine the cooling-rate dependence of the freezing temperature from E,(T) or 
R$(T) (as well as from the mean squared bond length, from the Flow parameter, 
the mean bond angle or the mean squared e n d - t o a d  distance of the chain, which is 
not shown here). 

It turns out that all S-shaped curves yield similar results for this extrapolation, 
within the error bars, so that we confine ourself to the exemplification of the 
dependence of T’ upon the cooling rate by using two representative quantities, namely 
Eb and for which the errors are smallest. The results of the extrapolation 
for E& and for (e Jnpc are shown in figures 12 and 13, respectively, whereas the 
corresponding r e d  derived from the internal temperature (i.e. from figure 7) is 
depicted in figure 14. Comparing these figures one can see at once that the cooling- 
rate dependence of Tg,is strongly influenced by the choice of the physical quantily 
from which one determines it, and by the sue of the temperature interval used for the 
extrapolation from the liquid side. None of these figures, however, show the weak 
cooling-rate dependence of the freezing temperature usually found in experiments [I] 
where T decreases with falling cooling rate in proportion to the logarithm of rQ 
For the !-shaped curves Tb even increases for falling cooling rate before it becomes 
independent of it within the error bars below rQ 6 6.0 x giving an average 

t For lhe linear regression seven points were used in this interval. although for clarity only three are 
shown in the figurer. 
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Fire 14. Freezing temperature Ta against rQ obtained from the coaling-rate 
dependence of the internal temperature. The broken curve represenu a non-linear 
61 IO the dah using (16). 

- 
freezing temperature of TSE = 0.194f0.003 for E,(T) and of Tp,b = 0.188?.~0.004 
for (bZ,pc)npc, respectively. Since the two averages agree with each other within the 
error bars, one can combine them into a single - average freezing temperature, which is 
representative for the S-shaped cuwes, ie. Tg = 0.191f0.003. Assuming that Tg(rQ) 
continues to fluctuate around this mean value for all cooling rates smaller than those 
studied, one can set equal to the freezing temperature at an infinitely slow cooling 
rate TK (i.e. lim,,,,Tg(TQ) =: TK). The abbreviation TK for this limit has been 
chosen to remind us of the Kauzmann paradox mentioned in the introduction, which 
originates from a similar extrapolation procedure. TK will therefore also be referred 
to as the Kauzmann temperature in the following. Contrary to that, the extrapolation 
for the intemal temperature results in a non-linear relationship between Tg and 
In( rQ): 
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where TK is defined above, and is a fit parameter like A and B. From the fit one 
obtains TK = 0.17 f 0.02. The motivation to set up (16) is the experimentally well 
established Vogel-Fulcher law for the viscosity 9(T)  [I] and the possible definition 
of the glass transition temperature as that temperature where the experimental 
observation time lerp becomes comparable to the inherent relaxation times ,T( T) [3] 
of the system. Using therefore the Vogel-Fulcher law with q(Tg) o( r(Tg)=tw and 
equation (4) one immediately arrives at (16). Although the extrapolated value of 
TK from this non-linear fit coincides with the average freezing temperature of the 
S-shaped curves within its error bars, the deviation of the two TK d u e s  shows that 
not only the functional relationship between Tg and ra, but also the limiting value 
of T, for an infinitely slow cooling rate, is influenced by the size of the temperature 
inteml chosen for the extrapolation from the liquid side. The larger this intelval is 
the more accurate the result of the extrapolation should be. Therefore the TK value 
from the internal temperature might be more reliable than that from the S-shaped 
curves. In addition, it also agrees very well with the Vogel-Fulcher temperature To, 
which can be obtained by fitting the Vogel-Fulcher law in the form 

to the simulated temperature dependence of the chain’s centre-of-mass diffusion 
coefficient. As well as To, D, and C are fit parameters in the above equation. 
Since a detailed discussion of how the diffusion coefficient of the chains can be 
measured in a computer simulation and how its temperature dependence can be 
described by different empirical and theoretical laws will be given elsewhere [45,46], 
we only present here the result of this analysis in figure 15 in order to show that 
the Vogel-Fulcher law succeeds in fitting the chain’s diffusion coefficient over a large 
temperature range (i.e. T E [0.25,0.8]), resulting in a value of T, = 0.17 f 0.02, 
which agrees with the above-determined value of TK within the error bars. Although 
these extrapolated glass transition temperatures, being derived from totally different 
physical quantities, are consistent with each other within numerical uncertainties, as 
is expected from experiment [SI, one should always bear in mind that they stem from 
fitting procedures whose validify and range of applicability cannot be determined on 
a sound theoretical basis. Furthermore, the scale of the available time window for 
these extrapolations lies in the range of nanoseconds where the viscosity is typically 
about ten orders of magnitude smaller than at the calorimetric glass transition point. 
Certainly, extrapolations will become more and more unreliable the larger the range 
they have to cover, and it is thus conceivable that the determined values of To or TK 
are overestimated. Therefore, we feel that the real value of the extrapolation results 
for the Vogel-Fulcher and the Kauzmann temperatures is to stake out the interesting 
temperature region for a possible glass transition in our model and not to give a 
precise estimate of its absolute freezing point, although it was possible to reproduce 
the experimental value of the Vogel-Fulcher temperature up to an error of about 
10% in the above-mentioned simulation of bisphenol-A-polycarbonate [38]. 

In view of these considerations, and of the above-obtained results, it seems that 
the experimentally observed linear relationship between Tp and I n r p  might be a 
possible description of the influence of the cooling rate on the glass transition, but 
not necessarily the only one [47]. Whether or not it is found largely depends on the 
specific quantity under investigation and also on the range of studied cooling rates 
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(for instance, for the range rQ E [ l . O  x in figure 14) because it 
predicts that Tg diverges as the cooling procedure approaches a quasistatic and thus 
thermodynamically well defined process. Therefore the linear relationship between 
Tb and In rQ should only be found if one confines oneself to a small range of cooling 
rates. The larger this range becomes the more the actual relationship should deviate 
from a linear relationship. 

1.0 x 

5. Conclusions and outlook 

In this paper we have studied the cooling-rate dependence of the glass transition in a 
dense three-dimensional polymer melt by performing a Monte Carlo simulation with 
the bond-fluctuation model. Motivated by the theoly of spin glasses, and the two- 
dimensional simulations for this system, we chose a simple two-level Hamiltonian to 
introduce a competition between the energetic demands of a bond and the topological 
constraints exerted on that bond by its environment. At low temperatures this 
competition results in a ‘geometric frustration’, where it is impossible that all bonds 
simultaneously adopt the energetically favourable ground state. Therefore the melt 
freezes in a highly disordered configuration whose structural properties depend on the 
applied rate of the cooling process. The inauence of the cooling rate is exemplified 
by the temperature variation of various quantities that are sensitive to changes on 
both the local length scale of a bond and of the radius of gyration. It is shown that 
the cooling rate affects the structure on these length scales quite differently. The 
larger the length scale, the slower the cooling rate must be in order to allow the 
structure on this scale to adapt to the new temperature. Therefore the results of 
this simulation emphasize the idea that a typical relaxation time is connected with a 
specific length scale in the system. 

If one tries to extract the cooling-rate dependence of the freezing temperature 
from the data one finds that the derived relationship is not unique, but that it largely 
depends on the quantity that is used for the analysis. Some of these quantities, 
such as the internal temperature, may produce a linear relationship between the 
logarithm of the cooling rate and the freezing temperature if one confines oneself to 
a small range of cooling rates (ie. one decade in this simulation) whereas a larger 
range (two decades are already sufficient here) no longer exhibits this experimentally 
often-observed linear dependence and might rather be well described by a non-linear 
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Vogel-Fulcher-type behaviour. Other quantities, however, such as the mean energy 
per bond, may even show an increase of the freezing temperature with decreasing 
cooling rate before Tb approaches a constant value. This difference in the functional 
relationship of the freezing temperature with the coolig rate shows not only that 
the whole extrapolation procedure for determining TK is very much influenced by the 
specific choice of the physical quantity, the size of the temperature intervals taken for 
the extrapolation and the way in which the melt is cooled (i.e. if one varies p linearly 
with time, as done here, or if one uses some other relationship between temperature 
and time), but it also emphasizes that a unique petzing point cannot unambiguously 
be defined as long as it is affected by the cooling rate. Since a cooling-rate dependent 
temperature may not be considered to be a ‘temperature’ from a strict thermodynamic 
point of view, only the quasistatic limit of Tg (i.e. lim,..40 T,(rQ) = TK) might be 
a meaningful quantity. Therefore it is important that the studied range of cooling 
rates is large enough to perform this quasistatic Limit. Nevertheless, the resulting 
values of this limit may still depend on the physical quantity under consideration 
and on the specific conditions under which the extrapolation has to be done. The 
mean energy per bond and the mean squared bond length, for instance, give a 
Kauzmann temperature of about TK c 0.19, whereas the internal temperature leads 
to a value of about TK c 0.17. Since the temperature interval on the liquid side 
is much larger for the latter quantity, the TK result from the internal temperature 
might be considered as more reliable. Another argument in favour of this value 
for the Kauzmann temperature is that it is also consistent with the Vogel-Fulcher 
temperature derived from the diffusion data. Although the same fit function, namely 
different versions of the Vogel-Fulcher law, was applied to obtain TK and Tu, this 
consistency of the values for the Kauzmann and VogeLFulcher temperature could not 
have been expected a priori because physical quantities of totally different origin were 
fitted. The coincidence of the two temperatures within the statistical errors, which was 
already pointed out by Adam and Gibbs 151, and the applicability of the Vogel-Fulcher 
law, should thus be interpreted as a confirmation that the bond-fluctuation method 
combined with the simple two-level Hamiltonian indeed reproduces experimentally 
well established features of the glass transition. This model Hamiltonian forces the 
melt to freeze in a liquid-like structure; the freezing does not take place at a well 
defined temperature (for a finite cooling rate) and it is accompanied by a drastic 
slowing down of the dynamics. The structure of the frozen melt really remains 
liquid-lie, which can be studied by recording the coherent structure function which 
is sensitive to changes on all length scales in the system. Since the analysis made here 
was confined to the length of a bond vector and to that of the radius of gyration we will 
complete the investigation of the influence of the cooling rate on the glass transition 
by determining its effects on the structure function and on related quantities, and 
report the results in a separate publication [a]. 

Despite the above-stressed agreement of the Kauzmann and Vogel-Fulcher 
temperatures, one should not forget that they result from an extrapolation procedure 
for which neither the systematic error nor the theoretical justitication is known. 
In view of these uncertainties it does not seem to us that a physically faithful 
extrapolation to an infinitely slow cooling rate is straightforwardly possible, so that 
all theoretical speculations based on such extrapolations must be doubtful. Hence we 
want to proceed in our analysis by allowing the configurations at certain temperatures 
to relax until the history of the cooling is eliminated. During this relaxation one can 
study the physical aging of the melt, while the equilibrated configurations at the end 
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of the relaxation may be used as starting points for further investigation of the static 
and dynamical aspects of the structural glass transition. 
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